検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 3 件中 1件目~3件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

口頭

A New approach to extracting biofilm from environmental plastics using ultrasound-assisted syringe treatment for isotopic analyses

Battulga, B.; 安藤 麻里子; 小嵐 淳

no journal, , 

本研究では、マイクロプラスチックの表面に形成されるバイオフィルム(有機付着物)の特性を明らかにするための第一ステップとして、バイオフィルムを分離回収する手法を開発した。茨城県内の河川において、大きさ、色、組成の異なる様々なマイクロプラスチック試料を採取した。それらの試料に超音波処理を行った後、シリンジを用いた方法により有機付着物を溶液として分離回収した。バイオフィルム由来の有機物から放射性セシウムが検出され、マイクロプラスチックが河川生態系における放射性核種の輸送媒体としての役割を果たすことが示唆された。また、有機物の安定炭素・窒素同位体の分析にも成功した。本手法は、マイクロプラスチックの状態や環境中における物質循環への寄与を解明するために有効である。

口頭

Rates of erosion in the Japanese Alps during the Quaternary; Insights from trapped charge thermochronometry

Bartz, M.*; King, G. E.*; Anderson, L.*; Herman, F.*; 末岡 茂; 塚本 すみ子*; 田上 高広*

no journal, , 

The Japanese Alps uplifted throughout the Quaternary and reached elevations of up to 3,000 m. However, understanding the interaction between rates of Earth surface processes, tectonics and climate is challenging, partly due to the difficulties of measuring changes in the rates of Earth surface processes at the timescale of glacial-interglacial cycles. In particular, the youth of the Japanese Alps has made measurement of their exhumation histories complicated. Here we investigate the potential of ultra-low temperature thermochronometers based on the luminescence and electron spin resonance (ESR) of feldspar and quartz minerals respectively for understanding changes in exhumation rates. We focus on Tateyama (Hida range), which was glaciated during the late Quaternary period. In total, eight samples were analysed by luminescence and ESR thermochronometry. While most luminescence signals have already reached their upper dating limit, ESR signals give insights into Pleistocene exhumation rates. We measured the ESR dose response and thermal decay properties of all samples, specifically targeting the Al and Ti centres. In general, thermal stability is higher for the Ti signals, resulting in ESR ages of between 0.5-0.9 Ma, although some signals are close to or above the upper dating limit of the Ti centre. In contrast, the Al signal still grows with time and is suitable for determining finite exhumation rates. Initial inversions reveal rock cooling rates on the order of 80 deg. C/Ma, which can be inverted to preliminarily rates of rock exhumation of <3 mm/a within the past 1 Ma. In the next step, we will relate these rates to the climatic (glacial) and tectonic history of the Tateyama region.

口頭

Eustatic change modulates exhumation in the Japanese Alps

King, G. E.*; Ahadi, F.*; 末岡 茂; Herman, F.*; Anderson, L.*; Gautheron, C.*; 塚本 すみ子*; Stalder, N.*; Biswas, R.*; Fox, M.*; et al.

no journal, , 

The exhumation of bedrock is controlled by the interplay between tectonics, surface processes and climate. The highest exhumation rates of cm/yr are recorded in zones of highly active tectonic convergence. Here, we use a combination of different thermochronometric systems, and notably trapped-charge thermochronometery, to show that such rates also occur in the Hida Range, Japanese Alps. Our results imply that cm/yr rates of exhumation may be more common than previously thought. The Hida Range is the most northern and most extensive of the Japanese Alps, and reaches elevations of up to 3000 m a.s.l. The Hida Range is thought to have uplifted in the last 3 Myr in response to E-W compression and magmatism. Our study focuses on samples from the Kurobe gorge, which is one of the steepest gorges in Japan. Previous work has shown that exhumation rates in this region are exceptionally high, as documented by the exposure of the ~0.8 Ma Kurobe granite in the gorge. We combined 12 new zircon (U-Th/He) ages and 11 new OSL-thermochronometry ages together with existing thermochronometric data to investigate the late Pleistocene exhumation of this region. We found that exhumation rates increased to ~10 mm/yr within the past 300 kyr, likely in response to river base-level fall that increased channel steepness due to climatically controlled eustatic changes. Our data allow the development of time-series of exhumation rate changes at the timescale of glacial-interglacial cycles and show a four-fold increase in baseline rates over the past ~65 kyr. This increase in exhumation rate is likely explained by knickpoint propagation due to a combination of very high precipitation rates, climatic change, sea-level fall, range-front faulting and moderate rock uplift. Our data show that in regions with horizontal convergence, coupling between climate, surface processes and tectonics can exert a significant effect on rates of exhumation.

3 件中 1件目~3件目を表示
  • 1